Q.1
Solution Explain:
37n+2 = (5 × 7 + 2)n+2 = a multiple of 7 + 2n+2
16n+1 = (2 × 7 + 2)n+1 = a multiple of 7 + 2n+1 and
30n = (4 × 7 + 2)n = a multiple of 7 + 2n
Thus 37n+2 + 16n+1 + 30n
= 7k + 2n (22 + 2 + 1) for same k ∈ N
= 7(k + 2n )
Therefore,
37n+2 + 16n+1 + 30n is divisible by 7.
Q.2
Solution Explain:
Putting x = w in the equation,
0 = a0 + a1ω + a2ω2 + a3 + ...... .... (i)
Putting x = ω2 in the equation,
0 = a0 + a1ω2 + a2ω + a3 +..... .... (ii)
Putting x = 1 in the equation,
3n = a0 + a1 + a2 + a3 + .... .....(iii)
adding (i), (ii) and (iii),
3n = 3(a0 + a3 + a6 + …..) .....(a)
⇒ a0 + a3 + a6 + ....... = 3n–1 (option C)
subtracting (ii) from (i),
0 = (ω – ω2) (a1 – a2 + a4 – a5 +.....)
Since ω – ω2 ≠ 0, a1 + a4 + a7 +... = a2 + a5 + a8 + ... .....(iv)
Also from (3) – (a), a1 + a2 + a4 + a5 +.... = 3n – 3n–1 = 2.3n–1 ..... (v)
From (iv) and (v), a1 + a4 + a7 +... = a2 + a5 + a8 + ... = 3n–1 = a0 + a3 + a6 + ....
Q.3
Solution Explain:
Q.4
Solution Explain:
Q.5
Solution Explain:
Sr = coefficient xr in the extension of (1+x)n (1- (1+x) )n
⇒ Sr = (-1)n if r = n
⇒ Sr = 0 if r < n
Q.6